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with fi = Nh/(a~lqhl), {) = N,/(b~lqkl), (v = Nt/(c*/Iqtl) 
( N  h, N, ,  N z are the numbers of unit cells along the 
crystal edges parallel to 41, b,, e~), so that the result 
given by one of us for the cube (see, for example, 
Wilson, 1949, p. 43, equation 26) is readily converted 
into equation (1') of Allegra & Ronca (1979) apart 
from a factor equal to the unit-cell volume. 

Lastly, we shall consider the case of the ellip- 
soid-shaped crystaUite. The line profile of a sphere with 
radius ris given by (Langford & Wilson, 1978) 

Ihkl($)= N { I / / - 2 -  I//-3 sin 2~, + ½gt-4(1 - c o s  2~)},(13) 

where 

q/= 27rrs, (13') 

and N = Vhk(O)/U is the number of unit cells in the 
crystal. From the above it readily follows that the 
diffracted intensity is given by (13) except for the 

replacement of N with N 1 and of ~ with 2rd~ zs, R being 
given by (11). Pa, Pb, Pc are here the intercepts of the 
ellipsoid along three Cartesian axes coinciding with the 
axes of the unit cell. 
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Abstract 

A partially analytic technique for the calculation of 
electron transmission functions used in multislice 
calculations is developed. This development utilizes the 
fact that atomic scattering amplitudes are generally 
available as fitting parameters to four Gaussians. The 
result is especially applicable to calculations with a 
large or infinite repeat distance in the incident-beam 
direction and initial test calculations give a time saving 
of a factor of four. Sample results are given for the 
calculation of images from an inclined stacking fault in 
gold. 

Introduction 

The multislice method (Cowley & Moodie, 1957; 
Goodman & Moodie, 1974) for the calculation of 
dynamical electron scattering has been discussed and 
used extensively (e.g. Bursill & Wilson, 1977; Lynch, 
1971). 
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The object is considered as a series of thin slices with 
the electron wave function at the exit surface of the nth 
slice being given by 

gtn(x ) =[gtn_ l(x ) , pn(x)] qn(x), (1) 

where qn(X) is the transmission function of the nth slice 
and Pn(X) is the propagation function from the 
(n -- 1)th to nth slice a n d .  represents the convolution 
integral. In a typical calculation the distance between 
slices is chosen to be constant and hence all p,(x)'s are 
the same and need only be evaluated once and then 
stored in computer memory. 

The transmission function is determined by 

qn(X,y: zn,Az ) = exp{--io~p(x,y: zn,Az)} (2) 

(Cowley & Moodie, 1957), where tr is the relativistic 
interaction constant for electrons and ~o(x,y: z , , dz )  is 
the projected potential on the x,y plane due to the 
crystal potential over the thickness Az from z = z n to 
z n + Az. This may be evaluated from the atomic 
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scattering amplitude, f~, for each atom, i, by the 
relation 

Zn+AZ 

~o,(x,y: zn,Az ) = f ~'~,o,w{fi(u,v,w)} dz, (3) 
g n  

where ~,v,w is the Fourier-transform integral over the 
reciprocal-space coordinates u,v,w and the constant 
h2/2nm0 e, where h is Planck's constant, mo is the rest 
mass of the electron and e is the electronic charge, has 
been included in the f : s .  For a periodic crystal the 
Fourier integrals become discrete summations giving 

z~az atoms f~(h,k,l) 

Zn 1 hkl 

x exp 2m ( x - x , ) -  + ( y - y , )  
a 

+ ( z - - z , ) ! }  dz, (4) 

where h, k and I are integers, (x,,y,,zl) are the 
coordinates of the ith atom in the unit cell, a,b,c are the 
unit-cell dimensions and J2 is the unit-cell volume. It 
can easily be shown that for projection over a whole 
unit cell (4) becomes 

atoms f l ( h , k , O  ) 

l hk 

x exp 2m ( x - x , ) - +  ( y - y , )  (5) 
a 

and hence (2) may be calculated once and the result 
stored in a two-dimensional array. 

Projection of the whole unit cell gives sufficiently 
accurate results for small values ofc (~2 A). For larger 
c (<10 A) the potential may still be formed over the 
whole unit cell and then it is considered as occurring on 
planes with ~2 A spacing [with a suitable fractional 
weight, for example, c = 5 A, say, use (5) to give ~0 e 
and then use ~0 c x ] in (2) with a propagation distance 
of 2 A forp in (1)]. This is necessary in order to reduce 
errors introduced by large propagation distances. 
However, for larger values of c and heavy atoms (see 
e.g. Lynch, 1971) the summation over l in (4) must 
be performed for each slice with Az ~ 2 A and, if l 
must be summed over a large range, this will be costly 
in terms of both computer time and memory. The 
following section details a technique in which the 
summation over l and integration over z in (4) are 
partly determined analytically. 

parameters of four Gaussians, viz: 

~(h,k,l) = tajexp tbj + 
J = l  

--  - -  cos 2 0 + 
ab (6) 

where laj and ibj are Gaussian fitting parameters, 0 is 
the angle between the h and k axes and l is assumed 
(without loss of generality) to be along the direction of 
propagation perpendicular to the h,k axes. Substitution 
into (4) and separating out the terms containing l gives 

4 zn+Az atoms iRs(h,k,O) 

J = 1 Zn 1 hkl 

m xexp m x - x  t) a 

where 

tRj(h,k,O)= tajexp [-tb {h2 k2)} 
[ J~a 2 + V " 

(7) 

When the integration over z is performed, the terms in l 
become 

Z e x p {  ,b1(!)2} c (e 2lniAz 
t ~-~  xp c 

= ~-' exp sin 
z _ _ a  

l C 

--2niz I l 2niz n l 
x exp ~ exp ~ .  

¢ ¢ 

exp 
inlAz 

(8) 

Equation (8) may be considered as a Fourier trans- 
form with respect to w (where w = l/c is now a 
continuous variable and the summation goes to an 
integration) to give a result in z n. Thus, by the 
convolution theorem, (8) becomes 

Partial  analyt ic  eva luat ion  o f  the transmiss ion  funct ion  

This technique uses the fact that the atomic scattering 
amplitudes, f~, are commonly tabulated as the fitting 

t I ) m sin ndzw c ~ { e x p  -tbj w 2 } * ~ a'w 

, ,.~w{exp niAzw}, ~.~w{exp --2mz l w}, (9) 
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which gives 

c{Ozlibs)l/2exp-z2zt2/lbJ}* ( ;  'znl < > Azl2J 

• ~(z,  + Az/2)  • J(z n - z i) 
gl 

= c f (zUtbj) 1/2 exp[-zc2(zn - g)2/lbj] dg 

zl--Az n(zn_zl)/b)/2 

- -  ~ 1 / 2  exp __p2 d p ,  (10) 
~(Zn-- glq- Az)llb) 12 

which has the form of the error function, erf(x), and 
gives 

c 
- . - .  z i ) /b}  i - e r f{z t (z , -  zi)/lbJl2]}. lerf[rdz n + Az - t 112  

2 

(11) 

Substitution into (7) shows that the result is the same as 
for projection over the whole unit cell [(5)] but with 
each laj Gaussian fitting term weighted by 1/c times the 
term in (11). 

Computation of q(x)  using this technique will (as 
will be seen more clearly in the following section) 
require summation over atoms outside the slice in 
which the projected potential is being formed. This 
replaces the full three-dimensional Fourier transform 
required previously and will in general be faster and 
more memory efficient since (a) the sum over I in (4) is 
the same as an out-of-slice atom sum and will have at 
least the same range as the technique above and (b) 
f i (h ,k , l )  will have to be either calculated each time or 
stored in memory for each atom type, whereas the new 
technique will only require the calculation and storage 
of the four parts of fi(h,k,O) corresponding to each taj 
parameter [ j  = 1 to 4, (6)]. The new technique would 
be expected to show significant savings for large 
values (or virtually infinite values - amorphous 
objects, sloping defects) of c. 

Alternative derivation in real space 

The same result may be derived in real space and gives 
a clearer indication of the significance of out-of-slice 
atoms. Equation (6) may be expressed in real space as 

4 
~ laj(rt/ lbj) ' /2exp{-(d? + z~)~z2/ibj}, (12) 

.l=1 

where d 2 is the distance to the ith atom in the x ,y  plane. 
This is just the potential distribution of the ith atom 
and hence the value of the integral of (12) over z = z n 
to z~ + dz divided by the value of the integral from -oo  
to +oo will give the fraction of the potential that is in 

the slice z n to z,, + Az. Now, 

; exp _p2 zr2/tbjdp = constant x erf {r~z/ibJ/2 } (13) 
0 

and ef t (m) = 1, hence the ratio of the two integrals is 

- z i ) / b J  l l, ½{erf[n(z, + Az z i ) / tby  2] - e r f [ n ( z , -  i 1/2 

(14) 

which is exactly the same as (11) (except for a factor of 
c). Equation (14) is the fractional potential of an atom 
in the slice and hence is the weight that must be applied 
to each taj in the evaluation of fi(h,k,O) in (5). This is 
the same result as before and clearly shows that atoms 
out of the slice must be included until the terms in (14) 
become small. This may be checked prior to cal- 
culation by evaluation of (14) and it would be expected 
that distances of under 10 A would be sufficient since 
atomic potentials are fairly localized and this is the 
order of value of c at which upper-layer-line effects 
become important in multislice calculations. 

Practical application 

The final prompt for the derivation of the above 
technique was given by the need to do full n-beam 
multislice calculations for defects - specifically, inclined 
stacking faults in f.c.c, materials. In general there is no 
repeat distance in the direction of the transmitted beam. 
This is specially the case for weak-beam studies where 
the crystal is tilted, say, 1-4 ° off a zone orientation so 
that even the perfect-crystal regions on each side of a 
stacking fault may not have a true repeat in the beam 
direction. 

If the thickness Az = c' sin 0 (where c' is the 
perfect-crystal repeat along the stacking-fault direction) 
then the successive slices are related to each other by a 
simple sideways shift equal to c' cos 0 (see Fig. 1) and 
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Fig. 1. Schematic diagram of an inclined stacking fault showing 
lack of periodicity in the beam direction. The shaded areas 
indicate unit cells on each side of the stacking fault, and slices for 
which the potentials, tp, are related by a simple shift are shown by 
the dashed lines. For f.c.c, structures the unit cell shown is for a 
[ 121] projection and the stacking fault occurs on (111) planes. 
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hence only one transmission function need be cal- 
culated and then progressively shifted sideways as a 
phase change in reciprocal space (similar to Lynch, 
1971). Figs. 2(a) and (b) show two different methods 
for obtaining the same result. The first method involves 
shifting the transmission function for successive slices 
whilst the second method shifts the wavefunction. This 
second method is preferable in the programs used since 
(1) can be recast to 

Wn(U)=~'--l{,-~-[Wn_t(u)Pn(u)]qn(x)}, (15)  

where W and P are Fourier transforms of ~, and p 
respectively, giving superior calculation times when fast 
Fourier transforms are used (Self, 1979; MacLagan, 
1975). Hence the sideways shift in ~,(x) may be easily 
included as a phase factor in Pn(u). 

Calculation results 

Fig. 3 shows the cell used to test the computer 
programs and theory. Calculations were performed 
using (a) three transmission functions corresponding to 
slices 1, 2 and 3 (all 3.13 A thick), (b)one trans- 
mission function (slice 1) and a sideways shift of 
9.97/9 A, and (c) the same as (b) but using the theory 
included in this paper to include out-of-slice atoms. The 

i EAM I i  EAM 

A 

~s~ _ ~ v . . . .  x_.',~. . . . .  q 

. . . .  x- - . . . .  x- %-  - 

(a) (b) 

Fig. 2. Progression of the calculation through three successive 
slices. Dashed lines represent the transmission function, q, full 
lines represent the wavefunction, ~, after each slice and the 
dashed arrows represent propagation between slices. In (a) the 
transmission function is shifted sideways whilst in (b) the same 
result is obtained with a tilted propagator. 
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Fig. 3. Test cells used. Cell 2 is related to cell 1 by a ~ a-axis 
(I.  108 A) shift. 

results in all cases were essentially identical and 
indicated that case (c) was approximately four times 
faster than case (b) for the calculation of the trans- 
mission function. In case (b)ft(h,k,l) was recalculated 
for each I value in order to simulate a defect calculation 
where computer memory might be at a premium. A 
point of interest arose in that it was found necessary to 
input the atomic positions as accurately as possible to 
give acceptably low values for the calculated non-Bragg 
points which should be equal to zero. Thus on a Cyber 
170-730 atomic positions were entered as two numbers 
representing a fraction so that the full precision 
available was utilized. 

As an example of the technique weak-beam images 
from the 202 beam, s = -0 .04 ,  for gold with a stacking 
fault on the (111) plane and imaged close to the [010] 
projection were calculated. Scattering factors due to 
Doyle & Turner (1967) were used with a periodically 
continued supercell (MacLagan, Bursill & Spargo, 
1977; Wilson, Bursill & Spargo, 1978/79) formed for a 
single slice satisfying the condition A z  = c '  sin 0 (where 
c' is the gold repeat in the [121] direction, see Fig. 1) 
with the stacking-fault edge half-way along the super- 
cell. The technique is especially suited to this sort of 
calculation since there are a large number of atoms in 
the superceU. Fig. 4 shows schematically how the 
crystal 'builds up' with thickness. For the super- 
cell-size used it is clear that above 679 .A crystal 
thickness the scattering from the stacking fault and 
'returning defect' at the end of the crystal (inherent in 
the method of periodic continuation) will overlap. (In 
fact, in order to avoid overlap of the images the 
maximum thickness would be restricted to around 
620/~.) Table 1 shows actual and estimated times and 
costs for the calculation of a 540 A thick crystal on the 
Cyber 170-730 at Sydney University. The results for 
the smallest calculation are presented below and this is 

BEAMI STACKING RETURNING 
1 FAULT VP (111) PLANE jl,, DEFECT 

/ ! / /  
• / 38 .¢ !  / / 

/ /  ' . 

/ " " 79,~ 

y , / 
/ = , ,  m 

EXIT SURACE SUPER CELL I085~ 
IMAGE CENTRE 

Fig. 4. Schematic diagram of the bulk crystal with a supercell of 
1085/~, and a stacking fault inclined at 38.6 ° to the incident 
beam. The shaded areas represent the periodically repeating 
supercells. For thickness, z, greater than 679/t~, the scattering 
from the stacking fault and returning defect at the ends of the 
supercell will overlap. Note that the intersection of the stacking 
fault with the exit surface of the crystal will always be in the 
centre of the calculated image. 
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Table 1. Actual (starred column) and estimated CPU 
calculation times and total job cost for  the Cyber 170- 
730 at Sydney University for  increasing number of  
beams [in terms of  the (202) distance] in reciprocal 

space and a 540 A thick crystal 

(202) distances in reciprocal space 

1.4" 2.7 5.4 

Set up transmission function 14 31 69 
(rain.) 

Perform iteration (rain) 4 10 22 
Cost (dollars) 45 lO0 220 

thought to be adequate for an initial test because (a) the 
multislice calculation allows for scattering out to twice 
the number of beams in the calculation [2.8 (202) 
distances] but not back into the calculation from 1.4 to 
2.8 (202) distances, (b) the crystal is tilted 3 -4  ° off a 

A A 
BOTTOM ~ TOP 

Fig. 5. Weak-beam stacking-fault image profile for Af = 
-10 000 A, C s = 2.5 mm and 265 A thick gold using the 202 
beam with s = -0.04 A -~ and an aperture of radius ~ A -1. The 
fringe spacing is approximately 16.9 A. 'Top' and 'bottom' 
indicate the point at which the stacking fault intersects the top 
and bottom surfaces of the crystal respectively. 

zone axis, (c) the image is formed from a weakly 
excited beam, and (d) calculations for thinner crystals 
and twice the number of beams gave the same image 
results. Various internal checks on the accuracy of the 
calculations [e.g. unitarity test, Moodie (1965); Bursill 
& Wilson (1977)] indicated that the calculations would 
be reasonably accurate. Figs. 5 and 6 present examples 
of calculated stacking-fault images for various values of 
thickness and defocus. These are only preliminary 
calculations and will be discussed more fully else- 
where. A brief discussion follows. 

In both figures the oscillating fringes between the 
intersection of the stacking fault with the top and 
bottom surfaces of the crystal are fairly simple and 
have a period of approximately 16.9 A. This is similar 
to results obtained for column- and non-column- 
approximation types of calculations (e.g. Jap & 
Shennin, 1981). The present calculations show that the 
image may extend past the ends of the stacking fault. 
This is especially the case for the 5 3 8 A  thick 
calculation where the intensity of the internal fringes is 
depressed compared with the thinner calculations, with 
a large bright fringe external to the stacking fault 
occurring at the top, for overfocus, and bottom, for 
underfocus, edges of the stacking fault. 
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Fig. 6. Weak-beam stacking-fault image profile for defocus values 
as shown, C s = 2.5 mm and (a) 538 ./~, (b) 304 tl. thick gold 
obtained using the 202 beam with s = -0 .04A -1 and an 
aperture of radius ,~ A -1. Again, the fringe spacing is 16.9/i and 
T and B refer to the intersection of the stacking fault with the top 
and bottom surfaces of the crystal respectively. The fringe detail 
between these two points has not been shown since it is a simple 
continuation of the oscillatory nature close to the stacking-fault 
ends. 
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